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INTRODUCTION
The core of suitability modeling is the analysis and interpretation 
of data to produce information useful to decision makers and 
stakeholders in a decision process (Malczewski 2004). Suitabil-
ity modeling may consider a number of geographic conditions, 
including location, development actions, and environmental 
elements (Collins et al. 2001), as well as legal requirements and 
social factors reflecting the values and interests of decision mak-
ers, individuals, or other stakeholders. While the use of the word 
suitability often refers specifically to the idea of site selection and 
development, the analytical concepts are more general (Hopkins 
1977) and applications more wide ranging. 

Discussing spatial expert systems, Malczewski (1999) notes a 
number of decision-making obstacles relevant to suitability mod-
eling: spatial decision problems are not well understood; knowl-
edge of spatial processes and decisions includes causal, common 
sense, and meta-knowledge but differs from person to person; 
people will approach and solve spatial problems differently; and 
communication barriers may exist between experts and people 
who operationalize decision support. Some of these obstacles can 
be overcome using an information-structuring process such as 
multicriteria evaluation (MCE). Geographic information systems 
(GIS)–based spatial decisions support systems (SDSS) (Densham 
1991) also are useful to apply to siting problems to bridge the 
gap between decision makers and complex quantitative analytic 
models (Maniezzo et al. 1998). With long-standing motivation 
for research on SDSS stemming from the recognition that some 
spatial decision problems are characterized by many of the previ-
ously mentioned problems, MCE has come to be recognized as 
an inherent part of SDSS (Jankowski et al. 2008). 

Developed as a subset of SDSS, planning support systems 
(PSS) are a special type of planning information technology 
consisting of geospatial application software and information 
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frameworks designed to support planning processes (Klosterman 
1997, Geertman and Stillwell 2003). PSS extend GIS capabilities 
in analysis and problem solving, and add design, decision-making 
and communication capabilities (Nedovic-Budic 2000). Unlike 
complex land-use or resource modeling software, PSS often take 
the form of a toolbox from which decision makers can draw for 
assistance in decision management, modeling, analysis and design, 
communication, visualization, and information dissemination 
(Klosterman 1997, Batty 2003). 

The purpose of this paper is to assess the quality of a PSS-
based suitability model. While the utility of PSS is broadly 
supported in the literature, implementation of PSS technolo-
gies has been slow and often unsuccessful (Geertman 2013, Te 
Brömmelstroet 2012). Vonk et al. (2006) mentioned a number 
of bottlenecks to PSS usage, including lack of experience, lack of 
awareness, and problems or uncertainties with instrument quality. 
Following Vonk and Geertman (2008), we assess the quality of 
the CommunityViz® suitability model with: (1) a literature-based 
overview of MCE, weighted linear combination modeling, the 
Kepner-Tregoe (K-T) decision-analysis framework, Communi-
tyViz and the CommunityViz suitability model, and uncertainty 
evaluation in MCE; (2) a stepwise presentation of PSS and K-T 
methods; and (3) a comparison of outputs between the PSS and 
K-T decision-making frameworks. Methods and outputs are 
presented using a case example of an energy facility siting decision 
situation in the U.S. West. 

BACKGROUND

Multicriteria Evaluation
MCE is defined by Voogd (1983) as a flexible framework for 
appraisal of a set of decision options using a number of criteria. 
MCE techniques are able to accommodate the political, social, 
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and values dimensions of a decision process or problem-solving 
situation. In discussing the theory underpinning MCE, Voogd 
(1983) argues that classification theory, not decision theory, 
provides the basis for MCE work. MCE assists with inventory, 
classification, and arrangement of the information needed to make 
choices. This added structure can produce a deeper knowledge of 
the decision situation, which would not have been obvious, given 
its complex nature. A key caveat, however, is that while MCE 
provides a structure for solving a problem, it does not provide 

the solution per se (Voogd 1983). 
There are a number of benefits to using MCE. MCE is seen 

as a transparent and systematic approach that increases objectivity 
and yields reproducible results (Janssen 2001). As detailed in Kiker 
et al. (2005), the use of MCE to structure a problem improves 
on heuristic approaches to reducing complexity in problem solv-
ing. MCE processes are a means of getting greater insight into 
value judgments, incorporating differing views in an analytical 
framework, providing a tangible means of demonstrating open-
ness in decision making, and reducing information incorporated 
in decision situations. Incorporating social and political concerns 
in an evaluation structure can generate circumstances that lead to 
acceptance, adoption, and implementation of resulting decisions. 
Integrating preferences with geographic data yields results that 
are feasible and accurate as well as acceptable to decision makers 
(Jankowski and Richard 1994) and the public (Lieske et al. 2009). 
MCE is a means to both justify and account for policy decisions 
(Voogd 1983). MCE facilitates the documentation of decision 
processes and enables decision-maker learning (Hajkowicz 2007). 
MCE may, through evaluation of alternatives, facilitate compro-
mise (Malczewski 1996). Another benefit of MCE is bringing 
scientific information to situations or people who might not 
otherwise have it. Most important, MCE processes are a way to 
arrive “. . . at substantially better considered decisions” (Voogd 
1983, p. 33). 

There also are potential disadvantages of MCE. MCE may 
lead to premature or over disclosure of information or intentions; 
MCE may be seen as too complex and/or technocratic. MCE 
may be seen as providing a false sense of accuracy, be subject to 
manipulation (Janssen 2001), and, like any research, MCE may 
be used as “. . . a ‘scientific sauce’ over a decision already made” 
(Voogd 1983, p. 34).

GIS-based MCEs are distinctive because results depend on 
the patterns of spatial data-based evaluation criteria and how spa-
tial data and preferences are combined (Malczewski 2011). Voogd 
(1983) defines an evaluation criterion as “a measurable aspect of 
judgment by which a dimension of the decision options under 
consideration can be characterized” (p. 55). Evaluation criteria 
used in GIS-based MCE are based on spatial relationship tests, 
including simple location factors such as proximity, conditional 
location factors, overlap, conditional overlap, Boolean tests, com-
plex factors, or numerical or lexical data attributes. With complex 
factors, evaluation criteria are determined using a separate model 
(Walker and Daniels 2011). Baban and Flannagan (1998) also 
mention consideration of criteria that are not site-specific such 

as impacts on human health and the environment.
Evaluation criteria may be differentiated between benefit 

criteria and cost criteria and further differentiated between re-
quirements and preferences. With benefit criteria, higher data 
values are correlated with better performance. With cost criteria, 
lower data values are correlated with better performance (Nyerges 
and Jankowski 2010). Requirements are evaluation criteria in a 
decision situation that are absolute and not subject to preferences 
or tradeoffs. While MCE most often is focused on preferences, 
identification of requirements, especially in spatial modeling, is 
extremely useful for it can speed up processing by a priori elimi-
nation of unsuitable decision options. 

The MCE literature provides a number of recommendations 
for establishing a set of evaluation criteria. The set of criteria 
should cover all aspects of the decision problem. Criteria should 
be able to be included in an analysis in a meaningful way. Criteria 
should be comprehensive, measurable, and nonredundant (Malc-
zewski 2000). The definition and measure of criteria should be in 
accord with their intended use (Voogd 1983) and the overall set 
of evaluation criteria should be minimized (Malczewski 1999). 
Per Voogd (1983), limiting the number of criteria minimizes 
uncertainty. 

Voogd (1983) offers several recommendations for addressing 
uncertainty in MCE: comparison of initial with final evaluation 
criteria, sensitivity analysis, and comparison of multiple MCE 
methods. Comparison of the initial list of evaluation criteria with 
the final list of evaluation criteria allows assessment of whether all 
pertinent criteria have been considered (Voogd 1983). Compari-
son of multiple methods helps minimize what Jiang and Eastman 
(2000) call decision risk, the probability that a decision will be 
made incorrectly. Sensitivity analysis is an exploratory process 
that allows one to gain a deeper understanding of a problem 
structure through evaluation of how changes in inputs (evalua-
tion criteria and weights) affect changes in outputs. The purpose 
of MCE sensitivity analysis is to facilitate uncertainty evaluation 
and assess the spatial impact of differing weights (Jankowski et al. 
2008). If small changes in evaluation criteria or weights result in 
no changes in the preferred decision option, one may have more 
confidence in output rankings (Nyerges and Jankowski 2010). 
If small changes in inputs result in changes in outputs, it may 
be necessary to reevaluate the structure of the model. Sensitivity 
analysis also helps to indicate which criteria have more and which 
criteria have less influence on model outcomes. Sensitivity analysis 
can reduce complexity by enabling the identification of criteria 
that do and do not influence decision-option ranking. Criteria 
with minimal influence on outcomes may be removed (Nyerges 
and Jankowski 2010). In general, there are two types of sensitivity 
analysis, one-at-a-time (OAT) factor analysis and global sensitivity 
analysis, with OAT being more common and easy to implement 
(Ligmann-Zielinska and Jankowski 2014). Sensitivity analysis 
couches MCE outputs by making clear outputs depend on the 
technique employed, the criteria chosen, criteria scores, and data 
quality, as well as weights (Voogd 1983). Outputs, therefore, are 
conditional.
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WEIGHTED LINEAR 
COMBINATION
One of the more widely used MCE methods is weighted linear 
combination (WLC) modeling. With WLC, evaluation criteria 
are standardized to a common numeric range, weighted, and 
combined to create a composite score for each decision option. 
Weights indicating relative importance are assigned to each 
evaluation criteria. The larger the weight, the more important a 
criterion is. For each decision option, a score for each criterion 
is calculated by multiplying the weight by the standardized value 
of that criterion. Scores are summed for all criteria to generate 
an overall suitability score for each decision option. The result 
is a continuous measure of suitability. Results generally are not 
compared with a separate benchmark or empirical standard 
(Hopkins 1977). WLC is one of the most straightforward and 
often-used GIS-based MCE methods (Malczewski 2011); WLC 
is easy to implement within GIS, is easy to understand, and is 
intuitively appealing to decision makers (Nyerges and Jankowski 
2010, Malczewski 2004, Voogd 1983). It also has been described 
as methodologically sound and transparent (Janssen 2001). WLC-
based results derived from GIS often are presented visually, using 
maps where scores are displayed with a graduated color ramp. 
Importantly, WLC and similar techniques provide reasonable 

problem solutions (Janssen 2001). 
Primary assumptions of WLC modeling are the linearity 

and independence of evaluation criteria. The linearity assump-
tion means a change in desirability of an attribute is constant for 
any change in the level of an attribute. For example, the change 
from zero to one acres of buildable land has the same impact on 
the model as the change from 999 to 1,000 acres of buildable 
land. The independence assumption means there are limited to 
no interaction effects among evaluation criteria. Results may be 
incorrect if interaction among attributes has not been taken into 
account (Malczewski 2000) through multiple counting of like or 
near-identical criteria. The independence assumption is concep-
tually similar to the assumption of no perfect correlation among 
independent variables in ordinary least squares regression analysis. 
With MCE, if there is a high measure of correlation between two 
criteria, one may be excluded from the set of evaluation criteria 
(Malczewski 1999). However, correlated criteria may be both 
incorporated in an analysis if they are likely to receive different 
weightings (Voogd 1983).

Table 1. Steps in weighted linear combination modeling (modified 
from Malczewski 1999, p. 199)

1. State the decision.
2. Define the set of evaluation criteria and the set of decision 

options.
3. Standardize each criterion map layer.
4. Define the criterion weights.
5. Construct the weighted standardized map layers.
6. Generate the overall score for each alternative.

Table 1 lists key steps in WLC modeling. In the first step, it is 
necessary for decision makers and stakeholders, in the language of 
Drobne and Lisec (2009), to recognize and agree on the problem 
to be addressed. WLC step two is actually three tasks, establishing 
the evaluation criteria, establishing the set of decision options, 
and calculating raw suitability scores. In a GIS-based suitability 
model evaluation, criteria typically are spatial layers and decision 
options are areal units. WLC step three is criterion standardiza-
tion where raw suitability values are transformed to comparable 
units (Malczewski 1999). Many criteria, for example distance to 
infrastructure and slope, use different measurement scales. Raw 
suitability scores more often than not require transformation to 
a common scale suitable for direct comparison. There are two 
scale transformation techniques, linear and nonlinear standardiza-
tion. Nonlinear standardization is the common approach used in 
suitability modeling (Walker and Daniels 2011). With nonlinear 
standardization, criteria are standardized to a consistent range, 
often zero to one or zero to 100. Nonlinear standardization 
makes weights more easily understandable and removes potential 
problems with differences stemming from a lack of knowledge 
or confusion over units of measure (Hopkins 1977). When raw 
data values include both negative and positive numbers, nonlinear 
standardization should be used (Nyerges and Jankowski 2010). 
Disadvantages of nonlinear standardization include the loss of 
clear meaning of well-understood measurement scales (Malcze-
wski 1996) and that model outputs do not relate to the raw scores 
in a linear fashion (Nyerges and Jankowski 2010). While there 
is some obfuscation associated with the loss of well-understood 
measurement scales, the issue of model outputs not relating to 
raw scores in a linear fashion does not ordinarily appear to be a 
problem. The latter issue especially is more than compensated 
for by the easier interpretation of evaluation criteria including 
relaxed requirements for knowledge of the units of the evaluation 
criteria. It also is noted that scores standardized with a nonlinear 
transformation will not necessarily be normally distributed. 
Negatively skewed standardized criteria will impact an analysis 
as though they are given a high weight, while positively skewed 
standardized criteria will impact an analysis as though they are 

given a low weight. 
WLC step four is assigning weights. Preferences may be 

captured in MCE numerically, using ordinal expressions (e.g., 
low, medium, high), or as Boolean values. In MCE, quantita-
tive values are referred to as weights while ordinal and other 
expressions of value are referred to as priorities (Voogd 1983). 
Weights and priorities improve an analysis by enabling a better 
understanding of tradeoffs among evaluation criteria as well as 
the consequences of different preferences (Hajkowicz 2007). A 
common option for incorporating weights in a WLC model is 
a numeric point scale where respondents indicate a number for 
each evaluation criterion on a one to X or zero to X scale. Osgood 
et al. (1957) found a seven-point number scale augmented with 
semantically differentiated (opposite) labels allowed respondents 
to adequately express their preferences. Voogd (1983) presents 
the results of an empirical comparison of several methods of 
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measuring  preferences that indicates a seven-point scale is one 
of two methods that perform better, take less time, and are less 
difficult than other methods. WLC steps five and six, constructing 
weighted standardized map layers and generating scores for each 
decision option, may be automated with GIS-based weighted 
overlay technologies, including purpose-built PSS.   

KEPNER-TREGOE DECISION 
ANALYSIS 
The Kepner-Tregoe decision model is part of a broader organiza-
tional management framework first conceptualized at the RAND 
Corporation in the 1950s by Drs. Charles Kepner and Benja-
min Tregoe. Grounded in the rational theory of organizational 
behavior (Dawson 1996), the K-T framework was formalized 
in the 1960s and made widely available through a popular busi-
ness literature monograph (Kepner and Tregoe 1965). Decision 
analysis is one of four analytic processes that make up the K-T 
framework, the others being Problem Analysis, Potential Problem 
(or Opportunity) Analysis, and Situation Appraisal (Kepner and 
Tregoe 1997). The framework has been extensively applied in a 
diversity of business-management applications when issues are 
complex and when a number of solution options exist (Kepner 
and Tregoe 1997, Finlow-Bates et al. 2000), in environmental 
management and remediation (Linkov et al. 2004, Kiker et al. 
2005), and physical infrastructure development (Thorpe and 
Kumar 2002). Watson (1987) points out that much of the suc-
cess of the framework is because of its approach in structuring 
individual and organizational thought processes in a highly 
systematic manner.  

Table 2. Kepner-Tregoe decision analysis steps (Source: Kepner and 
Tregoe 1997, pp. 85-86)  

1. State the decision.
2. Develop objectives.
3. Classify objectives into MUSTs and WANTs.
4. Weigh the WANTs.
5. Generate alternatives.
6. Screen alternatives through the MUSTs.
7. Compare alternatives against the WANTs.
8. Identify adverse consequences.
9. Make the best-balanced choice.

Table 2 outlines the nine steps of a traditional K-T decision-
analysis process. The first step in the K-T process is identical to 
the first step in WLC modeling: to recognize and agree on the 
problem to be addressed. K-T step two involves developing objec-
tives that are identical to evaluation criteria in MCE. In K-T step 
three, objectives are categorized as requirements (“musts”) and 
operational objectives (“wants”). In step four, wants are ranked 
and assigned relative weights. In step five, alternatives are gener-
ated that in step six are screened against the musts. In step seven, 
alternatives are compared against the wants by assigning relative 

scores for each alternative on an objective-by-objective basis and 
calculating weighted scores for each of the alternatives to identify 
the top-scoring choices. Step eight involves identifying adverse 
consequences for each top alternative and evaluating risk probabil-
ity (high, medium, low) and severity (high, medium, low), before 

making a final, single choice between top alternatives (step nine). 
The K-T framework shares many characteristics with WLC 

modeling. K-T modeling has predominately been operationalized 
in business applications using common spreadsheet technology. 
While K-T does not enable the direct incorporation of spatial data, 
the framework may represent spatial concerns in the abstract, for 
example, by considering travel time between locations.

COMMUNITYVIZ®

The CommunityViz suitability model is a spatial MCE framework 
built on a WLC model. Developed by the Orton Family Founda-
tion (Rutland, Vermont), CommunityViz is a modular system 
built on the ArcGIS platform (ESRI Inc., Redlands, California). 
It consists of two integrated extensions to ArcGIS: Scenario 360 
and Scenario 3D. The Scenario 360 module of CommunityViz 
extends the quantitative capabilities of ArcGIS by allowing 
formula-based spreadsheet-like calculations to be performed 
on geographic data. Formula-based GIS data attributes allow 
on-the-fly adjustment of geographic and numeric inputs as well 
as automated recalculation of maps and quantitative output in 
a process referred to as “dynamic analysis” (Walker and Daniels 
2011, pp. 32-35). Scenario 3D allows for three-dimensional 
display of the built environment and landscape with real-time 
movement and object manipulation in a semi photo-realistic set-
ting. CommunityViz is a promising tool for suitability modeling 
and spatial MCE generally because of the ability of the software 
to link weights with geographic data and automatically update 
the model when there are changes in either weights or geographic 

data inputs.
Sitting within the Scenario 360 module, the CommunityViz 

suitability model generates two kinds of evaluation criteria scores, 
raw and standardized. A raw evaluation criterion score is a direct 
query based on spatial relationships or attribute values. Com-
munityViz uses a formula-based dynamic attribute to calculate 
raw scores. Raw scores may be specified as a benefit or cost by 
indicating whether lower or higher suitability scores result from 
the calculation of a suitability criterion value. 

As shown in Figure 1, evaluation criterion weighting is incor-
porated in CommunityViz with easily changeable “assumptions” 
(Walker and Daniels 2011, p. 34) linked to dynamic attributes via 
a slider-bar interface. Weight sliders provide a graphical display of 
values as well as an easy means of adjusting weights. On changing 
a weight or attribute value, the CommunityViz suitability model 
will recalculate the suitability analysis based on the new input(s) 
then graphically display the new results in maps and charts. 
Weighted assumptions in the CommunityViz model often are 
set up using a numeric point scale. Given the ability to rapidly 
recalculate a model, a numeric point scale that includes a zero 
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value allows one to easily temporarily or permanently remove a 
criterion from the analysis. 

This technology invites interactive experimentation, supports 
discussion of the relative importance of each criterion, provides 
an approach for working through the difficulty of conflicting 
preferences, supports sensitivity analysis, and enables PSS-based 
suitability analysis to be used as a thinking tool in site selection.

 

SUITABILITY MODEL CASE 
EXAMPLE 
The High Plains Gasification-Advanced Technology Center 
(HPG-ATC) was envisioned as a $120 million synthesis gas re-
search and development facility in the state of Wyoming. Goals 
of the facility were to advance both the technical understanding 
of the conversion of feedstocks (e.g., coal) by gasification into 
synthetic gas (or syngas) for use in power generation, subsequent 
downstream conversion of syngas into liquid fuels and chemicals, 
and to increase in-state utilization of Wyoming minerals. As a 
research and development facility, the HPG-ATC was planned to 
be approximately 1/100th the size of a comparable commercial 
facility. Major components identified as part of the facility were 
feedstock storage, rainwater retention, feedstock processing, in-
dustrial gas processing, a gasifier, gas flare, byproducts handling, 
a control center, and electrical, maintenance, and educational 

facilities. 
In February of 2008, the University of Wyoming (UW) 

entered into a partnership with a U.S.-based energy company 
to design, construct, and operate the HPG-ATC. The project 
utilized a Front End Engineering Design (FEED) approach for 
determining the technical requirements and estimated costs of the 
facility (Plummer 2007). The FEED process addresses all aspects 
of facility construction, from process design, equipment and ma-
terial selection, to plant layout, health, safety and environment 
(HSE) planning, and civil, mechanical and electrical engineering 
(Baron 2010). The purpose of the FEED process is to develop 
the necessary strategic information for developers to address risk 
and commit resources to maximize the potential for a successful 

project. A completed FEED process serves as the basis for the 
start of facility construction (CII 2012). For the HPG-ATC, 
the development of a project FEED plan involved completing 
a number of preliminary or pre-FEED steps. These included 
analysis of facility requirements in tradeoff studies, determination 
of facility capabilities and configurations, total construction costs 
estimations, permitting process initiation, and site selection. The 
site-selection process is the focus here.

  

SITE-SELECTION PROCESS  
The purpose of the site-selection process was to identify the most 
preferred land parcel or set of contiguous parcels for HPG-ATC 
construction and operation based on criteria mutually agreed on 
by UW and the industry partner. This multi-scale internal evalu-
ation process involved three distinct yet overlapping analyses: (1) 
a PSS-based statewide suitability assessment, (2) an evaluation of 
site proposals offered by local government and economic devel-
opment entities through a public request for proposals (RFPs) 
process, and (3) parallel evaluation of the final six decision options 
using both PSS at the parcel level and K-T methods. The major 
activities, workflow, and approximate timeline of the suitability 
analysis are presented in Figure 2. The overall site-selection pro-
cess was structured around the steps of the K-T decision analysis 

process, presented in Table 2. 
A generalization of the evaluation criteria used in the HPG-

ATC site assessment is presented in the RFP (UW 2008). The 
site was to be at least 35 acres in size, level ground with minimal 
vegetation, at or above 4,000-feet elevation. The elevation re-
quirement came from the U.S. Energy Policy Act of 2005. The 
act specified a national research and development focus on high-
elevation integrated gasification combined cycle plants that would 
be carbon-capture and sequestration-capable, driven in part to 
tackle technology shortcomings in gasification of high-moisture 
coals such as those abundant in the state of Wyoming (CRN 
2009). Other influences on criteria development were HSE, 
greenfield status, suitable power, transportation infrastructure, 
distance to commercial air service, availability of natural gas fuel, 

Figure 1. Representative CommunityViz weight sliders on an 11-point scale
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public utility water and sewer, the quality and locations of wells 
and aquifers, landfill requirements, and distance to laboratory 
facilities. Anthropological, archaeological, historical, and cultural 
resources, as well as compatibility with natural areas, parks, and 
monuments, were also of concern. Proximity criteria included 
distance to wetlands, threatened and endangered species, species 
of critical concern, and wildlife migration corridors. Criteria were 
generated based on the amenities of nearby communities, includ-
ing the availability of emergency medical services, groceries, health 
care, housing, and restaurants. Criteria also were developed based 
on legal encumbrances, including zoning, air quality, and noise 
restrictions. Other infrastructure criteria included roads, flood 
management, and telecommunications availability (UW 2008).

K-T CRITERIA DEVELOPMENT
The evolution of thought surrounding evaluation criteria and 
weights occurred in a series of meetings of the site-selection 
team between November of 2008 and February of 2009. The 
process was similar to that described by Erdoğan (2009) where 
the knowledge of an interdisciplinary group of experts is modeled 
and refined over the course of the modeling process.. Originally 
(month one), 75 evaluation criteria were identified. During month 
two, the number of evaluation criteria had expanded to 97. At the 
same time, it was becoming clear that discussions of the statewide 
suitability model were causing experts to begin to think more 
spatially. For example, the month-one criteria specified proximity 
to CO

2
 sink. The month-two criteria refined proximity to CO

2
 

sink as a cost criterion. Wetlands changed from a proximity-based 
criterion to a Boolean criterion for the team decided distance to 

Figure 2. Major activities and timeline of the site-selection process

wetland was not of concern as long as the facility was outside 
of the wetland. The month three criteria were annotated with a 
Boolean value indicating the availability of GIS data. This version 
of the criteria also indicated thresholds for a number of criteria, 
for example, distance no greater than 20 miles. Weighting the 
wants (K-T step four) proceeded from the evolution of K-T 
criteria over the course of the decision process. During month 
three, weights were specified as one (low), two (medium), or 
three (high) importance. By month four, there was a substantial 
paring down of the number of criteria driven by data availability 
and the articulated need to consider independence given obvious 
redundancy in the original 75 criteria. 

Assignment of criteria attribute values initially were categori-
cal, based on specific conditions, and were transformed to numeri-
cal values. For example, site conditions where the site is level were 
given a value of nine where they meet specifications, three where 
they require work, or one where they require substantial construc-
tion or improvement. Final scores were calculated by multiplying 
the criterion attribute values by the weight. As part of the process, 
different components of the team determined weights separately. 
UW and the industry partner scorecards differed slightly in what 
they considered to be low-impact, medium-impact, and high-
impact criteria. Weights were reconciled during the middle of 
month four. K-T criteria were contracted to 47 early in month 
four then further reduced to 31 by the middle of month four. 
The final list of criteria included weights and explanations of the 
attribute value designation for each criterion. Following K-T step 
seven, alternatives were compared with the wants by calculating 
weighted scores for each of the alternatives. 
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STATEWIDE SUITABILITY
As the RFP was being circulated for responses and the set of 
evaluation criteria were evolving, the CommunityViz suitability 
model was used to develop a suitability map to guide the selection 
team on suitable locations for the HPG-ATC across the state of 
Wyoming. The steps used in this statewide model follow Malc-

zewski’s (1999) steps for WLC modeling summarized in Table 1.
The base layer used in the statewide model was a dataset 

of public land-survey system (PLSS) sections. Standard sections 
are one square mile in size. The raw data contain nearly 99,000 
records. To speed up processing, this layer was made smaller by 
removing unsuitable data records where (a) elevations are < 4,000 
feet, (b) most public lands, and (c) big-game migration corridors. 
The resulting data layer contained 55,892 records. Removing 
clearly unsuitable decision options at the beginning of a GIS-
based suitability analysis minimized the processing time required 
for subsequent calculations.

WLC steps five and six, which result in a suitability score for 
each decision option, are operationalized in CommunityViz with 
two dynamic attributes, raw suitability score and suitability. Both 
scores are calculated for each decision option (in this case, areal 
unit). The raw suitability score is determined by first calculating 
proportional weights (criterion weight divided by the sum of 
suitability weights) then multiplying the proportional weight by 
the standardized score for each evaluation criterion. Using Com-
munityViz, evaluation criteria were weighted using an 11-point 
scale where values range from 0 to 10 in increments of 0.1. Raw 
suitability scores are standardized with the suitability dynamic 
attribute using nonlinear standardization formulas for benefit 

criteria (Equation 1) and cost criteria (Equation 2):

(Nyerges and Jankowski 2010, Malczewski 1999)

The result is a suitability score assigned to each decision op-
tion. There are advantages and disadvantages to the use of a final 
suitability score to implement nonlinear standardization of raw 
suitability score results. The primary advantage of standardized 
suitability scores is being able to directly compare alternative 
combinations of evaluation criteria and weights on a standard-
ized suitability output scale. A drawback to this standardization 
is that while key ordinal results do not change, the standardized 
scores suggest a larger range of variation between the sites than 
do the raw scores. While the consequences of this transformation 
are beneficial for the direct comparison of differing evaluation 

criteria and weights, the consequences of the transformation are 
more ambiguous for the presentation of suitability results. For 
maximum clarity, one may present both the raw and standardized 

scores when evaluating specific choice possibilities.
To summarize, CommunityViz creates a raw score (direct 

measurement), a standardized score (nonlinear standardization 
of the raw scores), a raw suitability score, and a suitability score 
(the raw suitability scores transformed via nonlinear standardiza-
tion). The majority of the evaluation criteria used in the spatial 
models were a subset of the criteria employed in the K-T analysis. 
Criteria were included in the spatial model where spatial data of 
sufficient quality were available or could be developed within the 
scope of the project. 

PARCEL-LEVEL SUITABILITY
The statewide PSS analysis was used in conjunction with the K-T 
analysis to develop and assess evaluation criteria, including, as 
shown in Figure 2, the site-selection criteria put forward in the 
RFP. The RFP process was the means of generating site-specific 
decision options. The RFP resulted in 15 responses, each indicat-
ing specific parcels for potential construction of the HPG-ATC. 

Following K-T step six, decision options that did not meet 
a must were dropped from consideration. Of the 15 responses 
to the RFP, six met the musts and subsequently were evaluated 
as choice possibilities, using both the PSS and K-T frameworks. 
The PSS-based parcel-level evaluation was a modification of the 
statewide model that assessed suitability for the final six deci-
sion options. The parcel-level analysis offered direct comparison 
between PSS and K-T outputs. In addition to testing multiple 
methods, the rationale for developing a parcel-level PSS-based 
model stemmed in part from the observation that MCE results are 
not necessarily consistent across spatial scales (Malczewski 2000). 
Weights incorporated in the parcel-level PSS analysis were based 
on the designations of criteria as low impact, medium impact, 

or high impact from K-T step four. 
The final evaluation criteria incorporated in the K-T analy-

sis, the PSS-based statewide HPG-ATC suitability model, and 
parcel-level site selection are presented in Table 3. There were a 
total of 36 evaluation criteria incorporated in the three analyses. 
Thirty-one evaluation criteria were used in the K-T analysis. 
Fifteen evaluation criteria were incorporated in the statewide 
suitability model and the parcel-level model, 12 of which were 
present in both models. The site-selection team worked to make 
criteria as consistent as possible across the three analyses. Differ-
ences between the criteria incorporated in the K-T analysis and 
the two PSS models were because of limitations in the availability 
and quality of spatial data. Differences in criteria between the 
statewide suitability model and the parcel-level site selection 
model were the result of the inappropriateness of some evaluation 
criterion being included in a meaningful way at multiple spatial 
scales. For example, spatial data on soils were incorporated within 
the parcel-level model but not in the statewide model. The high 
degree of spatial heterogeneity in the soils data within the areal 
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Table 3. Evaluation criteria used in the K-T, PSS statewide site suitability model, and PSS parcel-level site selection mode
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units of the statewide model (approximately one square mile in 
size) made consideration of soil characteristics problematic at the 
statewide scale. Specific weights for the evaluation criteria are not 
shown because of the confidentiality constraints associated with 
a nondisclosure agreement governing the facility development 
partnership. 

RESULTS
Results of the statewide suitability model are presented in Figure 
3. Areas presented as gray hillshade are outside the study area 
based on elevation, public lands, and/or the presence of migration 
corridors as described previously. Suitability results are presented 
with a green to red color ramp where dark green areas identify the 
least suitable lands and dark red areas identify the most suitable 
lands. Figure 3 allowed the site-selection team members to see a 
clear visual representation of the implications of their collective 
preferences. 

Figure 4 presents the results of the PSS-based site-selection 
analysis (raw suitability score, upper panel) and the K-T–based 
results (lower panel). Although the K-T analysis incorporated 31 
evaluation criteria and the PSS site-selection analysis only 15, 
the processes led to similar outcomes. Site E located in Laramie 
County and site C located in Campbell County were the top two 
sites in both the PSS parcel-level model and the K-T analysis. Sites 
A, B, and F (all located in Albany County) and site D (located 

Figure 3. Statewide suitability standardized scores

in Goshen County) were ranked differently by the K-T and PSS 
analyses. Top-rated appraisal scores that are reasonably close to 
one another (e.g., less than 15 percent difference) should invite 
additional scrutiny such as verifying evaluation criteria have been 
assessed properly and that no relevant evaluation criteria have 
been excluded. 

In this case, multiple methods were demonstrated to yield 
similar site-selection outcomes. The number of final evaluation 
criteria in all the analyses (presented in Table 3) was considerably 
less than the number of initial set of 75 criteria considered in the 
K-T analysis. The difference between initial and final criteria 
was because of the elimination of redundant criteria and criteria 
eliminated because of poor quality or unavailable data. The final 
set of evaluation criteria were viewed as both comprehensive and 
nonredundant by the site-selection team.

One-at-a-time (OAT) sensitivity analysis was performed 
during site-selection team interactive discussions by reducing the 
weight of individual criterion to zero and observing the effect on 
suitability outputs. The OAT approach to sensitivity analysis is 
easily implemented using CommunityViz because of on-the-fly 
input adjustment and automated recalculation of maps and quan-
titative output. By applying sensitivity analysis to the statewide 
model, each of the 15 evaluation criteria incorporated in the PSS 
model may be mapped, analyzed, and evaluated separately. One 
is able to see the contribution of the individual components to 
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the overall analysis, inspect the components and formulas cre-
ated by CommunityViz, and make changes if needed to improve 
accuracy or performance. Sensitivity analysis allowed the team 
members to investigate the drivers of their suitability assessment, 
primarily negatively skewed attributes of spatial data that tended 
to overwhelm weights in determining suitability model outputs. 
Finding similar results from different methods, well-developed 
understanding of the evaluation criteria, consideration of multiple 
input alternatives, and rapid assessment of the resulting impacts 
on the outputs of these alternatives helped the team become very 
confident in the process and the modeling efforts helped inform 
the best possible choices. 

DISCUSSION AND CONCLUSION
This assessment of the CommunityViz suitability model covered 
methodological foundations, a stepwise walk-through of methods, 
and a comparative analysis augmented by consideration of uncer-
tainty and assessment of best practices. The primary findings of 
this research are that the CommunityViz suitability model closely 
follows the methods of multicriteria evaluation and weighted 
linear combination modeling, is a beneficial thinking and spatial 
decision support tool for facility site selection, and, therefore, 
is more broadly a valid tool for spatial multicriteria evaluation. 
Congruence with MCE and WLC methods serves to validate the 
CommunityViz suitability modeling framework. Comparison of 
PSS results with K-T results, especially as the models were built 

Figure 4. PSS-generated raw suitability and Kepner-Tregoe scores

with differing criteria (see Table 3) both served to validate PSS 

outputs and assisted in reducing decision risk.
With the HPG-ATC facility siting, the CommunityViz 

suitability model was demonstrably effective at producing trusted 
outcomes. As the CommunityViz suitability model and the K-T 
decision analysis framework both lack a built-in quantitative as-
sessment of uncertainty, the site-selection team followed Voogd’s 
(1983) recommendations for addressing uncertainty in MCE: 
comparison of initial with final evaluation criteria, sensitivity 
analysis, and comparison of multiple MCE methods. The addition 
of the K-T framework to the CommunityViz analysis addressed 
method uncertainty through separate verification of outputs. 
The collaborative internal decision nature of the HPG-ATC site-
selection process assisted with mitigating problems associated with 
the interdependence of evaluation criteria and developing weights 
that accurately reflected requirements and preferences. The evolu-
tion of evaluation criteria as part of an interactive and iterative 
model development process over several months, coupled with 
the sensitivity analysis of the final model enabled by the dynamic 
analysis capabilities of CommunityViz, resulted in a transparent 
process and built confidence among the team members. These 
observations are congruent with Kleinmuntz (2007), who notes 
that considering the effects of uncertainty helps build confidence 
in a model. This occurs, in part, because outputs may be viewed 
more broadly than a single modeling process resulting in a specific 
result, but as a framework where varied inputs may consistently 
produce similar results. Sensitivity analysis and the exploration 
of alternative inputs deemphasizes the outputs of any specific 
combination of inputs but bolsters the decision process when 
there is consistency of outputs. 

Determining the set of evaluation criteria serves as a basis 
for MCE best practices, including quality documentation, easy 
repetition, objectivity, and transparency (Janssen 2001). Addi-
tional best practices suggested by this research include removing 
clearly unsuitable decision options at the beginning of an analysis, 
which minimizes the processing time required for subsequent 
calculations. Enabling faster processing can be important when 
challenging the processing capability of a computer in an analysis 
with a larger number of decision options and when waiting on 
the results of a dynamic update in a meeting setting. 

This assessment shows the CommunityViz suitability model 
meets the requirements for planning methods proposed by Voogd 
(1983), including increasing insight to a decision situation, the 
ability to quickly handle changing inputs, transparency, and mak-
ing values incorporated in a decision process explicit. A potential 
drawback to the use of PSS for MCE is that it is a tool rather than 
a problem-driven approach. Voogd (1983) recommends drivers of 
an MCE process should be the characteristics of the problem and 
not the characteristics of the problem-solving technique. This is an 
inherent challenge for planning support systems. Consideration of 
the flexibility of PSS for adapting MCE modeling to specific deci-
sion situations may be part of the answer but this remains an area 
for future research.  It also is noted that while the PSS modeling 
process was transparent to the site-selection team, nonexpert and/
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or third-party audiences would likely require considerable effort 
to ensure the workings of the model were clearly understood.

Final selection of the HPG-ATC site, site E from Table 4, 
was based on criteria guided by the PSS and K-T frameworks 
but ultimately went beyond these methods. After using the PSS 
and K-T process to identify the top three ranked proposals, vis-
its were made by the team to each potential site. Final selection 
occurred after these visits based in part on information acquired 
during the visits and not exclusively based on criteria included in 
the models. The final decision on site selection was outside the 
bounds of MCE. At the same time, the final decision incorporated 
options and choices from the common and understood MCE 
framework. The process corroborates Voogd’s (1983) argument 
that MCE is a tool for classifying the information needed for 
choice and providing a structure for solving a problem rather 
than a decision-making tool that provides a “correct” solution.
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